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ANALYSIS AND CONTROL OF SUPERSONIC VORTEX BREAKDOWN FLOWS

Osama A. Kandil*

Accomplishments

In the period of January 1, 1990 to August 15, 1990, the Principal Investigator with the

assistance of two of his Ph.D. students has achieved the following accomplishments:

I. Referable Conference Papers, Proceedings and Journal Publications:

. Kandil, O.A. and Kandil, H.A., "Computation of Compressible Quasi-Axisymmetric Slender

Vortex and Breakdown," Proceedings of IMACS First International Conference on Compu-

tational Physics, University of Colorado, Boulder, June 11-14, 1990, pp. 45-51. A copy

of the paper is attached.

Abstract

Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated,

slender vortex are considered. The compressible, Navier-Stokes equations are reduced to a

simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting set

along with a compatibility equation are transformed from the diverging physical domain to a

rectangular computational domain. Solving for a compatible set of initial profiles and specifying

a compatible set of boundary conditions, the equations are solved using a type-differencing

scheme. Vortex breakdown locations are detected by the failure of the scheme to converge.

Computational examples include isolated vortex flows at different Mach numbers, external

axial-pressure gradients and swirl ratios.

. Kandil, O.A., Wong, T.C., Kandil, H.A. and Liu, C.H., "Computation and Control of

Asymmetric Vortex Flow Around Circular Cones Using Navier-Stokes Equations," 17th

Congress, International Council of Aeronautical Sciences, ICAS Paper 90-3.5.3, Stockholm,

Sweden, September 9-14, 1990. A copy of the paper is attached.

Abstract

The unsteady, compressible, thin-layer and full Navier-Stokes equations are used to nu-

merically simulate steady and unsteady asymmetric, supersonic, locally-conical flows around a

5°-seminapex angle circular cone.

* Professor and Eminent Scholar-Department of Mechanical Engineering and Mechanics, Principal Investigator
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The main computational scheme which is used in this paper is the implicit, upwind, flux-

difference splitting, finite-volume scheme. Comparison of asymmetric flow solutions using

the thin-layer and full Navier-Stokes equations is presented and discussed. The implicity,

upwind, flux-vector splitting, finite-volume scheme has also been used to solve for the unsteady

asymmetric flow with vortex shedding. The unsteady-flow solution using the flux-vector splitting

scheme perfectly agrees with the previously obtained solution using the flux-difference splitting

scheme. Passive control of asymmetric flows has been demonstrated and studied using sharp-

and round-edged, thick and thin strakes.

. Kandil, O.A. and Kandil, H.A., "Computation of Compressible Quasi-Axisymmetric Slender

Vortex Flow and Breakdown," Journal of Computer Physics Communications, Elsevier

science Publishers, Amsterdam, Netherlands, 1990. A copy of the paper is attached.

Abstract

Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated,

slender vortex are considered, the compressible, Navier-Stokes equations are reduced to a

simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting set

along with a compatibility equation are transformed from the diverging physical domain to a

rectangular computational domain, solving for a compatible set of initial profiles and specifying

a compatible set of boundary conditions, the equations are solved using a type-differencing

scheme. Vortex breakdown locations are detected by the failure of the scheme to converge.

Computational examples include isolated vortex flows at different Mach numbers, external axial-

pressure gradients and swirl ratios. Excellent agreement is shown for a bench-mark case between

the computed results using the slender vortex equations and those of a full Navier-Stokes solver.

. Kandil, O.A., Kandil, H.A. and Liu, C.H., "Three-Dimensional Compressible Vortex Break-

down Using Navier-Stokes Equations," Accepted for Presentation at The AIAA 29th

Aerospace Sciences Meeting, Reno, Nevada, January 1991.

Abstract

The three-dimensional, unsteady, compressible, full Navier-Stokes equations are used to

solve for isolated vortex flow and breakdown. The equations are solved using an implicit, flux-

difference splitting, finite-volume scheme on a rectangular grid, where the grid is clustered in the

cross-flow plane around the vortex axis. At the inflow plane, four profiles are specified and the

fifth profile is extrapolated from the interior domain. On the side boundaries, the axial pressure

gradient is specified and the other flow conditions are extrapolated from the interior domain. At

the outflow plane, the pressure is specified and the other flow conditions are extrapolated from

the interior domain. Other flow boundary conditions are also used. Computational applications

include isolated vortex flows at different external axial-pressure gradients, swirl ratios and Mach

numbers.
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Figure 1 showsa samplecomputationof an isolated-vortexflow breakdownafter 1800
iterationsteps.The swirl ratio at the inflow planeis 0.6,the Machnumberis 0.5, theReynolds

100andtheexternalpressuregradient (_) = 0.125.The rectangulargrid consistsnumberis
of 51x51x100pointsin thecross-flowplane(y andz directions)andtheaxialdirection (x-axis),
respectively,figure 1.agivestheflow streamlinesin theaxialplaney-x in thebreakdownregion
showingalmostanaxisymmeuicflow, stagnationpointsandbubbleflow. Figures1.b-1.dshow
thevelocity vectorsandblow-upsin thebreakdownregionin theaxial plane.Figure 1.eshows
the axial velocity, the presureanddensityvariationsalong thevortex axis.

Work is underwayto usefinegrid, longvortex lengthascomparedto its diameter,different
externalaxial-pressuregradients,different initial swirl ratios,different Reynoldsnumbersand
different Mach numbers.

5. Kandil, O.A., Kandil, H.A., Wong,T.C. and Liu, C.H., "Comparisonof AsymmetricFlow
solutionsUsingThin-Layerand Full Navier-StokesEquations,"Accepted for Presentation

at the AIAA 29th Aerospace Sciences Meeting, Reno, Nevada, January 1991.

In this paper, we present comparisons of the thin-layer and Full Navier-Stokes Solutions for

asymmetric flows. These cover steady asymmetric flows, unsteady asymmetric flows and passive

control of asymmetric flows using a fin in the plane of geometric symmetry and side strakes.

H. National and International Presentations and Other Related Activities

1. In the past year, the Principal Investigator gave presentations at:

- IMACS First International conference on Computational Physics, University of Colorado,

Boulder, June 11-14, 1990.

- 17th Congress, International Council of Aeronautical Sciences, Stockholm, Sweden,

September 9-14, 1990.

2. The Principal Investigator gave a Presentation at the Theoretical Flow Physics Branch During

the Fluid-Mechanics-Division Review of the Branch Research Work, March 1990.

3. the Principal Investigator gave a Presentation to the Naval Teting Command Group During

their Visit to Old Dominion University, May 11, 1990.

4. The Principal Investigator Organized and chaired the Following Sessions in Vortex Flow and

CFD:

-Session "Compressibility Effects," ASME International Symposium on Nonsteady Fluid

Dynamics, ASME Huids Engineering Divisions, Toronto, Canada, June 5, 1990.

-Session "Vortex Dominated Flow" AIAA 29th Aerospace sciences Meting, Reno, Nevada,

January 11, 1990.

-Twelve Sessions on CFD, Third International Congress of Fluid Mechanics, Cairo, Egypt,

January 2-4, 1990.
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The Principal Investigator has reviewed several papers for Journals and a Proposal for the

Army Research Office in the area of Vortex Flow; 2 papers for AIAA Journal, 2 papers for

Journal of Aircraft, 1 proposal for ARO.

Mr. Hamdy Kandil has developed Mean-Flow Profiles for Dr. Mehdi Khorrami who

is developing linear stability analysis for compressible vortex breakdown. The Division

Associate Chief, Mr. Dennis Bushnell has asked the Principal Investigator to help Dr.

Khorrami in his work. Mr. Hamdy Kandil has also developed a full Navier-Stokes solver

which is based on the thin-layer code CFL3D. The full Navier-Stokes solver has been tested

on asymmetric vortex flow cases and isolated vortex-flow cases. The results are in good

agreement with those computed by the CFL3D and with those computed by the slender

vortex code.

N





Fig. 1.a. Streamlines in axial plane in Vortex Breakdown region,

Moo, = 0.5, Re = 100, _ = 0.6, (_) = 0.125, n = 1,800, grid 51X51X100.dx e
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Fig. 1.b. Velocity Vectors in axial plane, Moo, = 0.5, Re = 100,

= 0.6, (_---EP'_= 0.125, n -- 1,800, grid 51X51X100.dx/e
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Fig. 1.c. Blow-ups of velocity vectors in Vortex Breakdown

region, Moo, 0.5, Re 100, # 0.6, dP= = = ('a';)e = 0.125, n = 1,800,

grid 51X51X100.
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Fig. 1.d. Bow-ups of velocity vectors in Vortex Breakdown

region, Moo, = 0.5, Re = 100, fl = 0.6, ('d"£)edr' = 0.125, n = 1,800,

grid 51X51X100.
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COMPUTATION OF COMPRESSIBLE QUASI-AXISYMMETRIC

SLENDER VORTEX FLOW AND BREAKDOWN

Osama A. Kandil and Hamdy A. Kandil

Department of Mechanical Engineering and Mechanics

Old Dominion University, Norfolk, VA 23529-0247

Abstract

Analysis and computation of steady, compressible, quasi-axisymmetdc flow of an isolated,

slender vortex are considered. The compressible, Navier-Stokes equations are reduced to

a simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting

set along with a compatibility equation are transformed from the diverging physical domain

to a rectangular computational domain. Solving for a compatible set of initial profiles and

specifying a compatible set of boundary conditions, the equations are solved using a type-

differencing scheme. Vortex breakdown locations are detected by the failure of the scheme to

converge. Computational examples include isolated vortex flows at different Math numbers,
external axial-pressure gradients and swirl ratios.

Introduction

The phenomenon of vortex breakdown or bursting was observed in the water vapor con-

densation trails along the leading-edge vortex cores of a gothic wing. Two forms of the

leading-edge vortex breakdown, a bubble type and a spiral type, have been documented

experimentally t. The bubble type shows an almost axisymmetric sudden swelling of the

core into a bubble, and the spiral type shows an asymmetric spiral filament followed by a

rapidly spreading turbulent flow. Both types are characterized by art axial stagnation point

and a limited region of reversed axial flow. Much of our knowledge of vortex breakdown

has been obtained from experimental studies in tubes where both types of breakdown and

other types as well have been generated 2"a.

The major effort of numerical simulations of vortex breakdown flows has been focused

on incompressible, quasi-axisymmetric isolated vortices. Grabowski and Berger 5 used the

incompressible, quasi-axisymmetric Navier-Stokes equations. Hafez, et. al6 solved the

incompressible, steady, quasi-axisymmetric Euler and Navier-Stokes equations and predicted

viscous breakdown similar to those of Garbowski and Berger. Spall, Gatski and Grosch 7 used

the vorticity-velocity formulation to solve the three-dimensional, incompressible, unsteady

Navier-Stokes equations.

Flows around highly swept wings and slender wing-body configurations at transonic and

supersonic speeds and at moderate to high angles of attack are characterized by vortical

regions and shock waves, which interact with each other. Other applications which encounter

vortex-shock interaction include a supersonic inlet ingesting a vortex and injection into a

supersonic combustor to enhance the mixing process, see Delery, eL alS and Metwally,

Settles and Horstman 9. These problems and others call for developing computational

schemes to predict, study and control compressible vortex flows and their interaction with

shock waves. Unfortunately, the literature lacks this type of analysis with the exception of

the preliminary work of Liu, Krause and Merme t° and Copening and Anderson tt.
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In this paper, the steady, compressible Navier-Stokes equations are simplified using the

quasiaxisyrnmetry and slenderness assumptions. A compatibility equadon I° has been used

and the governing equations are transformed to a rectangular computational domain by

using a Levey-Lee-type transformation. A compatible set of initial conditions and boundary

conditions have been obtained and the problem is solved using a type-differencing scheme.

The numerical results show the effects of compressibility, external pressure gradients in the

axial direction and the swirl ratio on the vortex breakdown location.

Highlights of the Formulation and Computational Scheme

Starting with the steady, compressible Navier-Stokes equations in the cylindrical coordinates

(._,_ and ¢), assuming the isolated vortex flowto b¢ slender [{ = 0 (:_), _ : 0 (_);

where l is a characteristic length, q the radial velocity, Uoo the freestream velocity and Re the

freestream Reynolds number] and quasi-axisymmetric [5_; ( ) = 0], and performing an order

of magnitude analysis, the equations are reduced to a compressible, quasi-axisymmetric,

boundary-layer-like set of equations. The dimensionless flow variables #, p, u, v, w, T and

/z, are non-dimensionalized by poo,pooa_,a_,a_/Cp and /zoo for the density, pressure,

velocity, temperature and viscosity; respectively, where Ct, is the specific heat at constant

pressure. Next, we introduce a Lzvey-I..e-type transformation which is given by

_ox Pe for ffdr (I)= pe/zedx, 77- A (_) p,

where A is given by

MSF =
f(p)

re (_) = modified shape factor chaxaterizing the growth of
r,(_i)

vortex- flow boundary (2)

and f(p) is a function relating the density integral at any axial station to that at the initial

station. It is equal to 1 for incompressible flow.

The subscript e refers to external conditions and the subscript i refers to initial location. The

governing equations become

OV 1 0 _.AV= 0
+ _.-0--_ (Aur) + pr

where v - Pe/zeAv -- r/x_u (3)
P P

where

= M 0 (crOu'_ (4.a)
(gu V __.uu lop Aow2 +._r_.._ \ A Or/)o,1 p p r

1 p/z (4.b)O=_r/x andc=
Pe/ze Pe/ze

_ w2= 0p (5)
r 0r/

owvowu-_-+ Or/ +_(V-0u)w= A2r20r} cr_ (6)

,- 2





where Pr = Prandfl number = 0.72.

3'-1
p = _pT

7

where 7 = ratio of specific heats.

The viscosity # is related to the temperature through the Sutherland law.

boundary, = we specify

(8)

At the initial

ui = u (r/), wi = w (77) and Ti = T (r/) (9)

The other compatible initial conditions are obtained from a compatibility equation and Eqs.

(5) and (8). At the vortex axis, r/= 0, we specify

Ou OT
= V = w - - 0 (10)

Or/ Or/

At the outer boundary, 77= r/e, we assume the boundary to be a stream surface, specify the

pressure gradient (_) and use the Euler equations to match the outer profiles toaxial

those of the viscous core to _btain the conditions on wc,ue, Te, pc.

Equations (3)-(7) are solved using an impficit, type-differencing scheme. The computational

procedure consists of two parts. In the first part a compatible set of initial profiles are

obtained at _ = _i and in the second part we use Eqs. (3)-(8) to obtain p, T, u, p, w and

V(or v).

Numerical Examples

In the present numerical examples, the outer-edge of the vortex, r/e, is taken as 10, and 1000

grid points are used and hence Ar/e = 0.01. The results are shown for two Mach numbers;

M = 0.5 and 0.75. The step size in the axial direction is 0.02 for M = 0.5 and 0.04 for

M = 0.75. For each Mach-number case, we show the effects of the external axial pressure

(_x) = 0.125 and 0.25 and the effects of the swirlgradient; ratio; /3 0.2 arid
e = -- r=l

0.4. The initial profiles for ui, wi and Ti are ui = constant, wi =/3 ui (2-r 2) for r < 1 and

wi =/3ui/r for r > 1 and Ti = 2.5, respectively. Figure 1 shows MSF, u,, p, and T, which

are referred to by curves A, B, C and D; respectively. The results show that the breakdown

length is more than doubled when the Mach number increases from 0.5 to 0.75. They also

show that while the outer boundary continuously increases for M = 0.5, it initially decreases

and then increases for M = 0.75; see the A curves. The adverse pressure gradient at the
vortex axis decreases faster for M = 0.75 than for M = 0.5. The results also show that the

external axial pressure gradient is a dominant parameter on the breakdown length. As the

external axial pressure gradient is doubled, the breakdown length substantially decreases.

Doubling the swirl ratio slighdy decreases the breakdown length.

Figure 2 shows the profiles of u, w, p and p across r at axial stations until the breakdown for

(_'] = 0.25 and 3 = 0.4 The initialM = 0.5 and 0.75 for the cases of \ d__/ profiles are indicated

3





by the number 1 and the next shown station is indicated by 3. At M = 0.75, it is noticed that
the pressure and density gradients in the axial direction decrease faster than those at M =

0.5. The profiles show that the viscous diffusion at M = 0.75 is larger than that at M = 0.5.

It is concluded from the given numerical examples chat increasingthe flow Mach number has

a favorable effect on the vortex breakdown location. The external axial pressure gradient is

a dominant parameter on the vortex breakdown. Its effect decreases as the Mach number is
increased. The present formulation and results could be used to generate compatible inidal

profiles for the full Navier-Stokes solutions, and to provide data for breakdown-potential

cases for accurate computations using the full Navier-Stokes equations. The full Navier-

Stokes equations are currendy applied to these cases.
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Abstract

The unsteady, compressible, thin-layer and full Navier-

Stokes equations are used to numerically simulate steady and

unsteady asymmetric, supersonic,locally-conicalflows around

a 5°-semiapex angle circularcone. The main computational

scheme which is used in thispaper is the implicit,upwind.

flux-differencesplitting,finite-volumescheme. Comparison of

asymmetric flow solutionsusing thethin-layerand fullNavier-

Stokes equations is presented and disc_. The implicit.

upwind, flux-vectorsplitting,finite-volumescheme has also

been used to solve for the unsteady asymmetric flow with

vortex shedding. The unsteady-flow solutionusing the flux-

vector splittingscheme perfectlyagrees with the previously

obtained solution using the fiux-differencesplittingscheme.

Passive control of asymmetric flows has been demonstrated

and studied using sharp- and round-edged, thick and thin

strakes.

Introduction

At cruiseconditions,where the angle of attackissmall.

most fiightvehicles are designed to operate with attached

flows. In the moderate to high angle-of-attack(AOA) ranges.

which are typicalconditions for highly maneuvering fighter

aircraftand missiles,extensiveregions of large-scalevortices

develop on the leeward sidesof the vehiclehighlyswept wings

and slender body. Within these AOA ranges, the cross-flow

velocity components and the gradients of other Ilow variables

become of the same order of magnitude or higher than those

of the axial direction. Consequendy, flow separation occur

and vortices emanate from the three-dimensional separation

lines of bmmdary-layer flows on wings, strakes and fuselage

of the vehicle. If the vortices are symmelric and stable, their

influence could be exploited favorably to provide high lift and

maneuverability for the vehicle. On the other hand, if the

vortices become asymmetric or if vortex breakdown occurs.

the useful influence of the vortices is terminated, l.,trge side

forces, asymmetric lifting forces and con, esponding yawing.

rolling and pitching moments, which may be larger than those

available by the vehicle conOol system, develop and jeopardize

flight safety. The onset of buffeting due to vortex breakdown

is another unfavorable voctex-induced phenomenon.

Highly swept, round and sharp-le_ing-edge wings and

pointed slender bodies are common semdynamic components

"Pn_'eu,_ ,,u/ EminentScholar, O_txnmsm M Msdtmir_ Enl/med_ md
Mechamc_ A_'- l_dlow AIAA.

•"Resean:hAumant. same Depamnm_,MemberAtAA.
• *'Group Leader._1 Plow Phyma Brain:h,Smior mmzds_rAIAA.

tO fighter aircraft and missiles. The study of vortex-dominated

flow around these isolated aerodynamic components adds to

our basic understanding of vortical flows under various condi-

tions including unsteady vortex-dominated flows, vortex-shock

interaction and asymmetric vortex flow breakdown. In this pa-

per. we focus on the problem of asymmeo'ic vortex flow about

slender bodies in the high AOA range. The problem is of vi-

tal importance to the dynamic stability and controllability of

missiles and fighter aircraft.

The onset of flow asymmetry occurs when the relative in-

cidence (ratioof angle of attackto nose semi-apex angle)of

pointed forebodies exceeds cerIJdncriticalvalues. At these

critical values of relative incidence, flow asymmetry devel-

ops due to natural and/or forced disturbances. The origin of

natural disturbances may be a transient side slip, an acoustic

disturbance, or likewise disturbance of short duration. The

origin of forced disturbances is geomeu'ic perturbations due

to imperfections in the nose geome_c symmetry or likewise

disturbances of permanent nature. In addition to the relative

incidence as one of the determinable parameters for the onset

of flow asymmetry, the freesuream Mach number, Reynolds

number and shape of the body-cross sectional area are unpor-

tantdeterminable parameters.

Kandil, Wong and Liu t used the unsteady, thin-layer

Navier-Stokes equations along with two different implicit

schemes to simulate asymmetric vortex fiows around cones

with different cross-section shapes. The numerical investi-

gation was focused on a 5*-semiapex angle circular cone

and local, conical flow was assumed. The first computa-

tional scheme was an implicit, upwind, flux-difference split-

ting. finite-volume scheme and the second one was an implicit,

cenural-difference, finite-volume scheme. Keeping the Mach

number and Reynolds number constants at 1.8 and 105. re-

spectively, the angle of attack was varied from 10* to 30*.

At ot = I0e. a steady symmetric solution was obtained and

the resultsof the two schemes were in excellentagreement.

At or= 20 ° and irrespectiveof the type or levelof the dis-

turbanco,t steady asymmetric solutionwas obtained and the

resultsof the two schemes were in excellentagreement. Two

types of flow disturbanceswere used, a random round-offer-

ror or a random truncation-errordistm'benceand a controlled

transientaide-slipdi_ with shortduration.For thecon-

trolledtransientside-slipdisturbance,the solutionwas unique,

and for the uncontrolledrandom disturbance,the solutionwas

also unique with the exception of having the same asymme-

try changing sides on the cone. At _ = 30 °, tn unsteady

asymmetric solution with vortex shedding was obtained, and

the vortex shedding was perfectly periodic. Next. the angle

of attack was kept fixed at 20° and the Mach number was
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increased from 1.8 to 3.0 with a step of 0.4. The solutions
showed that ,he asymmeuy become weaker as the Mach num-

ber is increased. The flow recovered its symmetry when the
Mach number reached 3.0. Selected solutions of steady and

unsteady asymmetric flows have also been presented for cones

with elliptic and diamond cross-sectional areas. Passive con-

trol of the flow asymmetry has been tentatively demonstrated

by using a fin on the leeward side of the body along the plane
of geometric symmetry.

Siclari 2 used the unsteady. Navier-Stokes equations with
a multigrid, cenu'al-difference, finite.volume scheme to solve

for steady asymmetric conical flows around cones with elliptic,

diamond and biparabolic sections. He addressed steady.flow

problems similar to those of the present authors in reference
l. He considered the flow around circular cones with semi-

apex angles of 5% 6° . 7 ° and 8 ° at an angle of attack of 20°
and a Reynolds number of 105. Varying the Mach number

from 1.4 to 3.0 with a step of 0.4, he showed that the flow
recovered its symmetry as the Mach number increased. The

higher the semi-apex angle was, the lower the Math number
was. for the flow to recover its symmetry. Fixing the Mach

number at 1.8, the angle of attack at 20 °. the Reynolds number
at 105 and the semi-apex angle at 5°. he decreased the cross-

section fineness ratio (ratio of width to length) for different

cross-sectional shapes. He showed that the flow recovered
its symmeu'y at a fineness ratio of 0.4 for the elliptic.section
cone, at 0.6 for the biparabolic-section cone and at 0.6 for the
diamond-section cone.

In a very recent paper by Kandil, Wong and Liu3. several

issues related to the asymmelric flow solutions have been ad-

dressed. It has been shown that a unique asymmelric flow so-

lution is obtained irrespective of the size of the minimum grid
spacing at the solid boundary. The asymmetry could reverse
sides due to the random nature of the disturbance. It has been
also shown that for the same flow conditions and samesection

fineness ratio, diamond-section cones with sharp edges have

less flow asymmetry than those of the elliptic-sectlon cones.

Moreover, it has been shown that passive control of/low asym-

merry of diamond-section cones requires fence heights that
are not necessarily equal to the local section width. On the

other hand. passive control of flow asymme._y of circular and
elliptic-section cones require fences with heights that are. at

least, equal to the local section width. Again. it was also

shown that unsteady periodic asymme.xric flow with vortex

shedding has been predicted.

In reference 4 by Kandil, Wong and Liu, several unsteady,

asymmetric vortex flows with periodic vortex shedding for
circular and noncircular-section cones were presented and
studied.

In the present paper, we present comparisons of asymmet-
ric flow solutions using the thin-layer and full Navier-Stokes

equations. Next, we show that the flux-vector splitting scheme

produces unsteady asymmetric vortex flow with periodic vor-

tex shedding which perfectlyagrees with the previouslyob-
tained solution using the flux-difference splitting scheme x. Fi-

nally, passive conlrol of asymmetric flows is studied using
sharp- and round-edged, thick and thin su'akes.

Formulation

Governing Equations

The conservative form of the dimensionless, unsteady,

compressible, full Navier-Stokes equations in terms of time-
independent, body-conformed coordinates _1, _2 and _3 is

given by

oQ Ogm O(L),=O:a=t_3,.=t_3 (1)
O_ + O_ _ 0_'

where

_m __._m (XI, X2, X3) (2)

: "_ = _ L°.PUt.PU2,PU3,pe] ' (3)

l_m _ inviseid flux

=- ok(mEk
l

= _[OUm. putUm + Ot(mp,pu2U=

+02(mp.pu3Um + O_('_p,(_ + p) Urn]_ (4)

(1_), =_viscous and heat-conduction flux in _'
direction

= _[0, _',_t, _,£'_, Ok_'",S,

Ok_t(Uu_a--qk)]t; k= 1-3, n= 1-3 (5)

Um= _k_mUk (6)

The first element of the three momentum elements of Eq. (5)

is given by

-

• a0Ul]

The second and third elements of the momentum elements are

obtained by replacing the _bscrip_ 1, everywhere in Eq. (7),

with 2 and 3, respectively. The last element of Eq. (5) is

given by

Ok_' (Up'rkp--qk)- :'_ [(Ok,'Opt"

0o,
. Oup

o (a_)
t)efl,e-7/;-J:p = t-3 (s)+(,y-

The singlethin-layer approximations of thefull Navier-Stokes
equations demand that we only keep the derivatives in the
normal direction to the body, ,fz, in the vi_'.,ous and heat flux

terms in Eqs. (1), ('7) and (8). Thus, we let s = 2 for the term
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_in Eq. (1) ands=2 andn= 2inEqs. (7) and (8).

These equations reduce to

oQ + O_m 0 (L)Z = 0 <9)
Ot O_ m _2

Mo_ ( Out3 (10)

Ok_2 (uprkp -- qk) -- "_{_W

+"I+"I)

* ON)l}q (-y- l)Pr o_2 J (11)

where

1 _.2_uk
_l = 0_£20k_ 2, _ = _ v,_ _-, W = ap£2up (12)

The reference parameters for the dimensionless form of the

equations are L, ao_, L/aeo. p_ and/J_ for the length, veloc-

ity, time, density and molecular viscosity, res]x_tively. The

Reynolds number is defined as Re = p_Vo_L/poo, and the

pressure, p, is related to the total energy per unit mass and

density by the gas equation

P = (7-- l)p e-_

The viscosity is calculated from the Sutherland law

/, = TU, ( 1 +C'_
\T+--C/' C = 0431z 04)

and the Prandtl number Pr = 0.72.

In Eqs. (1)-(12), the indicial notation is used for convenience.

Boundary and Initial Conditions

Boundary conditions are explicitly implemented. They

include inflow-outflow conditions and solid-boundary condi-

tions. At the plane of geometric symmetry, periodic conditions

are used for symmetric or asymmetric flow applications on the

whole computational domain (fight and left domains). At the

farfield inflow boundaries freestresm conditions are specified,

while at the far-field outflow boundaries first-order extrapola-

tion from the interior points is used. On the solid boundary,

the no-slip and no-penelration conditions are enforced; ul =

u2 = u3 = 0 and the normal pressure gradient is set equal to

zero. For the temperature, the adiabatic boundary condition

is enforced on the solid boundary. The initial conditions cor-

respond to the uniform flow with ul = u2 = u3 = 0 on the

solid boundary.

For the passive control applications using side snakes,

double thin-lay_ Navier-Stokes equations are used where one

thin-layer is used normal to the body and another thin-layer

is used normal to the stralce surface. For these applications.

solid-boundary conditions are enforced on both sides of the
strake.

Computational Scheme

The main computational scheme used to solve the govern-

ing equationsis an implicit,upwind, flux-difference splitting,

finite-volume scheme. It employs the flux-difference split-

ting scheme of Roe. The ]acobian$ matrices of the inviscid

fluxes. A, = s_q; s = 1-3, an: split into backward and forward

fluxes according to the signs of the eigenvalues of the inviscid
Jacobian matrices. Flux limiters are used to eliminate oscil-

lations in the shock region. The viscous and heat-flux terms

are centrally differenced. The resulting difference equation is

solved using approximate factorization in the _t _2 and _3

directions. The resulting computer program can be used to

solve for the thin-layer Navier-Stokes equations and the full

Navier-Stokes equations. This code is a modified version of

the CFL3D which is currently called "FTNS3D". In this code,

the implicit, flux-vector splitting, finite-volume scheme, which
is based on the Van-Leer schem_, can also be used instead

of the flux-difference splitting scheme. The flux-vector split-

ting scheme is used to solve for the unsteady asymmetric flow

application in this paper. This application is a validation so-

lution to the solution which has been previously obtained I for

the same application using the flux-difference splittingscheme.

Since the applications in this paper cover conical flows

only. the three-dimensional scheme is used to solve for locally

conical flows. This is achieved by forcing the conserved

components of the flow vector field to be equal at two planes

of x = 0.95 and 1.0.

Computational Applications

1. Comparison of Thin-Layer and Full Navier.

Stokes Asymmetric Solutions:

This numerical testhas been carriedout to study the dif-

ferences between asymmetric solutionsusing the thin-layer

Navier-Stokes equationsand the fullNavier-Stokes equations.

For this purpose, supersonic flow around a 5°--semiapex an-

gle circular cone at 20" angle of auack is considered. The

freestream Mach number and Reynolds number are 1.8 and

10 s, respectively. A grid of 161x81 points in the circumfer-

ential and normal directions is generated by using a modified

Joukowski transformation with a geometric series for the grid

clustering. The minimum grid spacing at the solid boundary

is fixed at Z3,_2 = 10 "4, while the maximum radius of the com-

putational domain is kept at 21 r. where r is the radius of the

circular cone at the axial station of unity.

Three cases have been computed: the first is obtained us-

ing the single thin-layer Navier-Stokes eqtmtiorts. The second

is obtained using the one-direction full Navier-Stokes equa-

tions, where all the viscous teams in the _2 direction (normal)

are kept. The third is obtained using the two-direction full

Navier-Stokes equations, where all the viscous terms in the _2

and _3 directions (normal and circumferential) are kept. Figure

I shows the results of this test in lefms of the residual error ver-

sus the number of iterations,the total-pressm'c-losscontours

and the surface-pressurecoefficientversus the meridian angle

0 (0 is measured from the leeward-side plane of geometric
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symmetry). The residual-error figure of the thin-layer N•vier-
Stokes solution shows that the asymmetric solution starts after
$,000 iterations. The error drops to machine zero (10 -10) in

about 2,500 iterations, in_ six orders of magnitude after

s total of 5,000 steps and then drops again producing the asym-
mendc stable solution after 9,000 iterations. The residual-error

figure of the one-direction full Navier-Stokes solutions drops

4.5 orders of magnitude in 2,500 steps, increues one order of

magnitudeaftera totalof 3,000stepsand thendropsagain

producingtheasymmetricstablesolution.Itdropstomachine

zeroin•totalnumber ofiterationstepsof6,000.The residual.

errorfigureof thetwo-directionfullN•vier-Stokessolution

drops4.5ordersofmagnitudein2,000steps,increasesone or-

derofmagnitudeafter• totalof3,000stepsand thendropsto

machinezeroina totalofnumber of iterationstepsof 6,000.

ItisclearthatthefullNavier-Stokesequationsproducethe

asymmeu'icsolutionfasterthanthe thin-layerNavier-Stokes

equations.

The total-pressure-loss-contours slow that the full Navier-
Stokessolutionsproducethickershearlayersthan thoseof

thethin-layersolution.More contourresolutioninthevortex

coresisproducedby thefullNavier-Stokessolutionsthanthat

ofthethin-layersolution.Finally,thefree-shearlayeron the

body right-sideof thefullNavier-Stokessolutionsisshorter

thanthatof thethin-layersolution.However, theCp figures

of thethreesolutionsareexactlythesame.

Sincethe thin-layerNavier-Stokesequationsare invalid

for low-Reynoldsnumber flows,we used the fullN•vier-

Stokesequationsforthe same applicationgiven•bore but

with Re = 104. Figure 2 shows an almost symmetric flow
solutionwhich isobtainedusingthe two-directionN•vier-

Stokesequations.

2. Control of Asymmetric Flow Using Sharp-

Edged Thick Strakes:

Passive control of the asymmetric flow case of Fig. 1 is

consideredusing• sharp-edgedthickstrakeswithlengthequal

to0.3ofthelocalradiusofthecircularcone mcdon, Tho grid

used isgenerated by usinga hyperbolicgridgeneratorwith

transfinite grid interpolation to refine the grid in the strake
region. The double thin-layer Naris-Stokes equations are
used for this case. The iteration histories of the residual

error and lift coefficients am shown in Fill. 3. This case

takes I0,000 steps to obtain • stable symmetric solution with

machine zero error. The total-pressure-loss contours, the

cross-flowvelocity and the gu-face-pressure coefficientofFig.

3 show the perfectlysymmetricsolution.The surface-pressure
coefficientshows a jump inthepressurevalue attheleading

edges of the strakes which correspond to 0 = 90" and 0 :

270°.Comparisonsof theCp ofFig. I and Fig.3 show that

the strakes produce higher lift in Kldition to their function of

eliminating the flow asymmetry.

3. Umt,,-dy Asymmetry Flow Solm/on Using the

Flux-Vector Splltl/ngScheme:

This flow application has been solved previously in ref-
erence 1 using the flux-difference splitting scheme by Kandil,

Wong and Liu. The governing equations used were the un-
steady, compressible, thin-layer,Navier-Stokes equations. The

resuiting solution showed unsteady asymmeu'ic flow with pe-

riodic vortex shedding. The computed period ofshedding cy-

cle was found as 1.4with • sheddingfrequencyof 4.488.

This flow application case is recomputed using the flux-vecwr

splitting scheme ofVan-Leer with the thin-layerNavier-Stokes

equations. This flow application is that of a 5*-scn_iapex angle
cone at 30* angle of attack, 1.8 freesu'eaunMach number and

105 freesu'eam Reynoldsnumber. The same grid of 161xgl

with minimum spacing of _Z = 10-4 is reused here. The so-

lutionisobtainedusingtime-accuratesteppingwithAt = 10-3.

The logarithmic resldmd figure, Fig.4 shows the time history

of the solution. The first 5,000Lime steps show that the resid-

ualerror drops 8 ordersof magnitude. During these steps the

flux limiters (act as numerical dissipation) are turned-on and
the solution shows symmetric steady flow. Thertafter, the flux

limiters ate turned-off (to minimize the artificial damping) and
the residual error increases 5 orders of magnitude, then drops

6 ordersofmagnitudeand finally increases anothersix orders

of magnitude. Next, the solution goes through a transi|mt re-

sponge for 2,000 time steps and finally it becomes periodic.

Thisisclearlyseenaft_ the 12,000time steps.The solution

isthenmonitoredevery I00 timesteps.InFig.4,we show

the solution for one-half the cycle of vortex shedding;from
n = 13,900ton = 14,600.Itis seen thatvortex sheddingis

obtainedand by comparingthesolutionsofn = 13,900and n

= 14,600,whicharemirrorimagesofeachother,we conclude

thatperiodicvortexsheddingisalsoreached.Again thepe-

riodofperiodicsheddingis10-4×1,400= 1.4corresponding

toa sheddingfrequencyof4.488,which isexactlythesame

as that of theflux-difference splitting.

It is conclusive that the periodic vortex-shedding solu-
tions are confirmed.The reason that some researchers could

not obtainthe periodicvortex-sheddingcase usingtheflux-

vectorsplittingissimplybecauseof theartificialdissipation

producedby thefluxlimiters.Thisnumericaldissipationpro-

duceshighdamping effectwhich suppressestherandom dis-

turbance of the solution. By turning-off the flux limiters, the

randomdisturbance solution can grow producing the asymmet-
ric unsteady vortex shedding flow. It should be noticed that

the flux-difference splitlingscheme of Roe is less dissipative
than that of the flux-vector splitting scheme of Van-Leer. This

is why we could obtain the unsteady vortex shedding solution
of reference I even with the flux limiters turned-on.

4. Control of Unst_dy Asymmetric Flow Using Sharp-

Edged and Round-Edl_d Thick and Thin Strakes

Passive con_'olofunsteadyasymmeu'icflow caseof Fig.4

is considered using diffaertt shapes and orientations of strakes.
In all the numerical tests presented in Fip. 5.=8, the strake

lengthis0.3 ofthelocal radius ofthecircularcorn',section.

Figure 7 shows sample of typical grids which art used with the
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fiat-platestrikeswithdifTerentorientations,6 = 0% 10,
-10, (whe_ 6 = strikes with different orientation angle). The

grid is generated by using • hyperbolic grid generator with

u'ansfinite grid interpolation to refine the grid in the snake

region. The double, thin-layer Navier-Stokes equations are
used inthisanalysis.In Fig. 5,sharp-edgedthicksn'akes,

which have the same geomeU'y asthatof Fig. 3,areused.

The su'akes are still effective in eliminating the unsteady

asymmetric vortex-shedding flow at this high angle of attack.
The resulting flow is perfectly symmetric with • lift coefficient

higherthanthatoftheunsteadyasymmetricflowof Fig.4.

Again,theCp curveof Fig. 5 shows •jump inthepressure

coefficientatthestrakesleadingedgeat0 = 90°and 8 = 270°.

The n_sulting symmeu'ic primary vortex cores are closer to the
leeward plane of symmetry and higher above the body surface

than those of Fig. 3. It took 11,000 iteration steps to reach

this stable symmetric solution.

In Fig. 6, we replaced the sharp-edged thick surakes with

round-edgedthicks_'akeswhich againproduceda perfectly

symmetricsolutionin6,000iterationsteps.The liftcoefficient

isa littlelessthanthatofthesharp-edgedthicksn'akes.The

resultingsymmen'icprimaryvortexcorearea littlecloserto

the leeward plane of symmetry and • little less high above the

body surface than those of Fig. 5.

In Fig. 7. we use flat-plate snakes at orientation angle 8
= 0,, 10, and -10 °, where 8 is measured from the horizontal

line at 0 = 90°. All three cases produce perfectly symmeuic

solutions. The case with 6 = -10' produces the highest lift

coefficient followed by the case of 8 = 0, and then the case

of 6 = 10°. The case of 6 = -10 ° took 6,000 iteration steps,

the case of 6 = 10, took 8,000 iteration steps and the case

of 6 = 0° took 10.000 iteration steps, all to reach a stable

symmetric solution.

Concluding Remarks

In this paper, the unsteady, compressible, thin-layer and
Navier-Stokes equations are used to study several aspects of
asymmeuic vortex flow around cin:ular cones and its passive

control. The main computational scheme which is used to

produce the steady flow results is the implicit, upwind, flux-
difference splitting, finiu:-volume scheme. Comparisons of the

thin-layer and full N•vier-Stokes asymmeu'ic solutions show

that the full Navier-Stokes equations produce thicker shear-

layers than those produced by the thin-layer equations. More-
over, the full Navier-Stokes equations give better resolution

in the vortex cores. Finally, the full Navier-Stokes equa-

tions produce the asymmetric flows faster than the thin-layer

equations. It has also been shown that the flux-vector split-

ting scheme without flux lim/ters produces the same unsteady

asymmetric flow with periodic vortex shedding as that of the
flux-differencesplittingscheme with fluxlimiters.Finally,

passiveconn'olof steadyand unsteadyasymmetricflowhas

been demonsn'atedby usingseveralshapesofsnakes.While

the su'akes eliminate the flow asyrnmenv, they produce high

liftfortheconfiguration.
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Abstract

Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated,

slender vortex are considered. The compressible, Navier-Stokes equations are reduced to a

simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting set

along with a compatibility equation are transformed from the diverging physical domain to a

rectangular computational domain. Solving for a compatible set of initial profiles and specifying

a compatible set of boundary conditions, the equations are solved using a type-differencing

scheme. Vortex breakdown locations are detected by the failure of the scheme to converge.

Computational examples include isolated vortex flows at different Mach numbers, external axial-

pressure gradients and swirl ratios. Excellent agreement is shown for a bench-mark case between

the computed results using the slender vortex equations and those of a full Navier-Stokes solver.

Introduction

The phenomenon of vortex breakdown or bursting was observed in the water vapor condensation

trails along the leading-edge vortex cores of a gothic wing. Two forms of the leading-edge

vortex breakdown, a bubble type and a spiral type, have been documented experimentally [1].

The bubble type shows an almost axisymmetric sudden swelling of the core into a bubble, and

the spiral type shows an asymmetric spiral filament followed by a rapidly spreading turbulent

flow. Both types are characterized by an axial stagnation point and a limited region of reversed

axial flow. Much of our knowledge of vortex breakdown has been obtained from experimental

studies in tubes where both types of breakdown and other types as well were generated [2-4].
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The major effort of numerical simulation of vortex breakdown flows has been focused on in-

compressible, quasi-axisymmetric isolated vortices. Grabowski and Berger [5] used the in-

compressible, quasi-axisymmetric Navier-Stokes equations. Hafez, et. al [6] solved the in-

compressible, steady, quasi-axisymmetric Euler and Navier-Stokes equations using the stream

function-vorticity formulation and predicted vortex breakdown flows similar to those of Gar-

bowski and Berger. Spall, Gatski and Grosch [7] used the vorticity-velocity formulation to solve

the three-dimensional, incompressible, unsteady Navier-Stokes equations.

Flows around highly swept wings and slender wing-body configurations at transonic and super-

sonic speeds and at moderate to high angles of attack are characterized by vortical regions and

shock waves, which interact with each other. Other applications which encounter vortex-shock

interaction include a supersonic inlet ingesting a vortex and injection into a supersonic combus-

tor to enhance the mixing process, see Delery, et. al [8] and Metwally, Settles and Horstman

[9]. These problems and others call for developing computational schemes to predict, study and

control compressible vortex flows and their interaction with shock waves. Unfortunately, the

literature lacks this type of analysis with the exception of the preliminary work of Liu, Krause

and Menne [10] and Copening and Anderson [11].

In this paper, the steady, compressible Navier-Stokes equations are simplified using the quasi-

axisymmetry and slendemess assumptions. A compatibility equation [10] has been used and the

governing equations are transformed to a rectangular computational domain by using a kevey-

Lee-type transformation. A compatible set of initial conditions and boundary conditions are

obtained and the problem is solved using a type-differencing scheme. The numerical results

show the effects of compressibility, external axial pressure gradients and the swirl ratio on the

vortex breakdown location. A bench-mark flow case has been solved using these equations and

the full Navier-Stokes equations. The results are in excellent agreement with each other.
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Highlights of the Formulation and Computational Scheme

Starting with the steady, compressible Navier-Stokes equations which are expressed in

the cylindrical coordinates (_,_ and 0), assuming the isolated vortex flow to be slender

[}=O( )__ ,V-z=O( ' ); wherelisacharacteristiclength,_theradialvelocity, U_

the freestream velocity and Re the freestream Reynolds number] and quasi-axisymmetric

[_ ( ) = 0], and performing an order of magnitude analysis, the equations are reduced to a

compressible, quasi-axisymmetric, boundary-layer-like set. The dimensionless flow variables p,

2 2
p, u, v, w, T and/_, are non-dimensionalized by p_,p_aoo,a_,aoo/C p and p_ for the den-

sity, pressure, velocity, temperature and viscosity; respectively, where Cp is the specific heat at

constant pressure. Next, we introduce a Levey-Lee-type transformation which is given by

where A is given by

MSF - A (_)
f(p)

× Pe /r --Pdr

_ re (() = modified shape factor charaterizing the growth of
re (_i)

vortex- flow boundary

(1)

(2)

and f(p) is a function relating the density integral at any axial station to that at the initial station.

It is equal to 1 for incompressible flow.

The subscript e refers to external conditions and the subscript i refers to initial location. The

governing equations become

0V 1 0 _.AV
0--3-+ _ (,Xur)+ pr = 0

/_u
where v - pe#eA V - r/x-- (3)

P P

where

0u v0U = 1 0p
u_ + 0,7 p0_

 ,0w o+ ---- (4.a)
p r ArOr/kAOr/J

0 1 p#- r/x and c - (4.b)
Pe/-Ze PePe
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__w__ Op (5)
r 071

u__ + V_O_._ +prOW Ow _--- (V - Ou) w = ._2r= Or/ cra (6)

where Pr - Prandtl number = 0.72.

where 7 = ratio of specific heats.

p - pT (8)
7

The viscosity _uis related to the temperature through the Sutherland law. At the initial boundary,

= (i, we specify

U i = u(r/),w i = w(r/) and Ti = T(r/) (9)

The other compatible initial conditions are obtained from a compatibility equation and Eqs. (5)

and (8). At the vortex axis, 77 = 0, we specify

Ou 02"
-- = V = w - - 0 (10)
O77 Or/

At the outer boundary, 77= r/e, we assume the boundary to be a stream surface, specify the axial

gradient (7_'_'J and use the Euler equations to match the outer profiles to those of thepressure
] e

viscous core to obtain the conditions on ue We, Te, Pc.

Equations (3)-(7) are solved using an implicit, type-differencing scheme. The computational

procedure consists of two parts. In the first part a compatible set of initial profiles are obtained

at _ = (i and in the second part we use Eqs. (4)-(8) and the compatibility equation to obtain

p, u, w, p, T and V (or v).
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Numerical Examples

In the present numerical examples, the outer-edge of the vortex, r/e, is taken as 10, and 1000

grid points are used and hence A_Te = 0.01. The results are shown for two Mach numbers; M =

0.5 and 0.75. The step size in the axial direction is 0.02 for M = 0.5 and 0.04 for M = 0.75. For

each Mach-number case, we solve for two external axial pressure gradients; (_) _ 0,125 and
e

0.25 and two swirl ratios; 3 = ({)r=t = 0.2 and 0.4. The initial profiles for ui, wi and Ti are ui

= constant, w i = _q ui r(2-r 2) for r < 1 and wi =/3ui/r for r > 1 and Ti = 2.5, respectively. Figure

1 shows MSF, Ua, Pa and Ta which are referred to by curves A, B, C and D; respectively. The

results show that the breakdown length is more than doubled when the Mach number increases

from 0.5 to 0.75. They also show that while the outer boundary continuously increases for M

= 0.5, it initially decreases and then increases for M = 0.75; see the A curves. The adverse

pressure gradient at the vortex axis decreases faster for M = 0.75 than for M = 0.5. The results

also show that the external axial pressure gradient is a dominant parameter on the breakdown

length. As the external axial pressure gradient is doubled, the breakdown length substantially

decreases. Doubling the swirl ratio slightly decreases the breakdown length.

Figure 2 shows the profiles of u, w, p and p across r at axial stations until the breakdown location

forM--05a_0_5fort_o_a_,_oe(_) --0:5a__--0*_o_i_a_p_o_l,_a_oinc_ca_e_
e

by the number 1 and the next shown station is indicated by 3. At M = 0.75, it is noticed that

the pressure and density gradients in the axial direction decrease faster than those at M = 0.5.

The profiles show that the viscous diffusion at M = 0.75 is larger than that at M = 0.5.

Figure 3 shows the profiles of u, w, v and p which has been computed by the present method

_n__yanuvw_o__av_o_-S_o_o__ol_orfor_o_a_oo__ - 0_,_--06a_ (_) 0. For
e

the Navier-Stokes solver a rectangular grid of 100x 51 x51 in the axial direction and cross-flow

plane is used. The curves are labeled by the capital letter A, B... etc. Comparing the curves of

the two sets, a remarkable agreement is seen.
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It is concludedfrom the given numericalexamplesthat increasingthe flow Mach numberhas

a favorableeffect on the vortex breakdownlocation. The external axial pressuregradient is

a dominant parameteron the vortex breakdown. Its effect decreasesas the Mach number

is increased. Comparisonof the presentresults with the full Navier-Stokesresults gives a

strong confidencein the presentanalysis. The presentformulation and results are used to

generatecompatibleinitial profiles for the full Navier-Stokessolutions,and to providedata for

breakdown-potentialcasesfor accuratecomputationsusingthefull Navier-Stokesequations.The

full Navier-Stokesequationsarecurrently applied to thesecases,so that we can solve for the

flow in the breakdownregion.
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= 0.25.
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